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Magnus Schau-Magnussen,† Stergios Piligkos,† Högni Weihe,† Susanne Mossin,§ Marco Evangelisti,⊥

and Jesper Bendix*,†

†Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
‡Max Planck Institute for Bioinorganic Chemistry, D-45470 Mülheim an der Ruhr, Germany
§Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
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ABSTRACT: The use of kinetically robust chromium(III) fluorido
complexes as synthons for mixed 3d-4f clusters is reported. The tendency
toward linear {CrIII−F−LnIII} units dictates the cluster topology.
Specifically, we show that reaction of cis-[CrIIIF2(NN)2]NO3 (NN =
1,10-phenanthroline (“phen”) or 2,2′-bipyridine (“bpy”)) with Ln-
(NO3)3·xH2O produces isostructural series of molecular {Ln2Cr2}
squares (1−9) with linear fluoride bridges. In a parallel fashion, fac-
[CrIIIF3L], where L = N,N′,N″-trimethyl-1,4,7-triazacyclononane
(“Me3tacn”), reacts with Nd(NO3)3·6H2O to form a fluoride-centered
penta-nuclear complex and fac-[CrIIIF3L′], with L′ = 1,1,1-tris-
((methylamino)methylethane) (“Me3tame”), reacts with [Ln-
(hfac)3(H2O)2] (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone) to yield
an isostructural series of {Ln3Cr2} (10−14) trigonal bipyramids with no
central ligand. The formation of the latter is accompanied by a partial
solvolysis of the Cr(III) precursor but without formation of insoluble LnF3. The magnetic properties of the gadolinium
containing clusters allow quantification of fluoride-mediated, antiferromagnetic Gd−Cr exchange interactions of magnitude
between 0.14 cm−1 and 0.71 cm−1 (Ĥ = J12S ̂1·S2̂ formalism) and vanishingly small JGd−Gd of 0.06(0) cm

−1. The large spin and
small anisotropy together with weak exchange interactions in the {Gd3Cr2} (11) cluster give rise to a very large magneto-caloric
effect of −ΔSm = 28.7 J kg−1 K−1 (μ0H = 90 to 0 kOe).

■ INTRODUCTION
Interest in high-nuclearity clusters incorporating lanthanoid
ions has been boosted by the quest for magnetically anisotropic
molecular systems as single-molecule magnets,1 and, more
recently, the increasing focus on nanoscopic coolers2 has
established a need for molecular entities exhibiting very-large
spin ground states. Presently, the vast majority of mixed 3d-4f
clusters are bridged by large organic ligands or smaller entities
such as hydroxide or especially alkoxides whereas valence-
isoelectronic fluoride bridges are exceedingly scarce.3 Reported
examples of fluoride-bridging included, until recently, only
systems with diamagnetic Ti(IV) ions, namely, [La-
{(C5Me4Et)2Ti2F7}3]

4 and [Ln{(C5Me5)2Ti2F7}3] (Ln = Pr,
Nd)5 in which the 12-coordinate lanthanoid ion is exclusively
surrounded by fluoride ions. Recently,6 fluoride-bridged
systems were augmented by lanthanoid-containing wheels or
fused wheels featuring fluoride bridges in conjunction with
pivalate bridges between chromium(III) and lanthanoids. As
discussed by Winpenny and co-workers, the synthesis of

fluoride-bridged 3d-4f clusters is hampered by the strong
affinity of lanthanoid(III) ions for fluoride resulting in
competitive formation of highly insoluble LnF3. The above-
mentioned titanium complexes probably owe their existence to
the comparable affinity of “hard”7 Ti(IV) and the lanthanide
ion for fluoride. Thus, the successful isolation of those
polynuclear systems is most likely irrelevant for the majority
of other transition metal ions. However, relying on kinetics
rather than thermodynamics the use of kinetically robust
transition metal (TM) fluoride complexes, for example, of
chromium(III), may be a generally feasible approach provided
the synthesis can be carried out relatively fast and at moderate
temperatures. In the synthesis of mixed 3d-4f clusters
topological control is difficult to achieve because of the
flexibility in coordination number and geometry of the
lanthanoid ions and frequent solvent coordination. There are
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very few accessible mono- or diatomic bridges which have not
been extensively explored. Its simplicity, spectroscopic
innocence, relatively low basicity, and preference for “hard”
metal ions make fluoride an attractive bridging ligand for mixed
transition metal-lanthanoid complexes. Furthermore, the
tendency toward pseudolinear bridging established in transition
metal chemistry could facilitate prediction and design of specific
molecular topologies, if it can be shown to carry over into
lanthanoid chemistry. To exploit the latter property of the
fluoride ligand, it is necessary to target simple systems with
unsupported fluoride bridges. This will also allow for a
quantification of the magnetic interaction via the fluoride
bridge, which was not possible in the wheels wherein the
fluoride bridge coexists with one or two pivalate bridges.
Useful building blocks for polynuclear fluoride-bridged 3d-4f

systems would be robust di- or trifluorido complexes of Cr(III)
preferably with polydentate coligands and soluble in organic
solvents. Such difluorido precursors are well described in
literature with the auxiliary ligand sphere consisting of amines
or imines, for example, cis-[CrF2(phen)2]NO3.

8 Additionally,
neutral trifluorido analogues can be obtained by minor
modifications of published synthetic procedures.9 Here we
describe the syntheses and properties of a class of simple
chromium(III)-lanthanide clusters starting from di- and
trifluorido complexes of chromium: cis-[CrF2(NN)2]

+ (NN =
phen, bpy), fac-[CrF3(Me3tame)], and fac-[CrF3(Me3tacn)].

■ RESULTS AND DISCUSSION

We have recently, demonstrated the formation of bimetallic
fluoride bridged linear rods or squares obtained by using robust
trans-[CrF2(py)4]

+ (py = pyridine)10 or cis-[CrF2(phen)2]
+,11

respectively, as building blocks. This type of reactivity is
generalizable, and 1:1 assembly reactions in methanolic
solution of cis-[CrF2(phen)2]NO3 and Ln(NO3)3·aq yield
tetranuclear clusters, which crystallize as solvates with the
general formula [{CrF2(phen)2}2{Ln(NO3)4}2]·4MeOH·H2O
(Ln = Ce−Nd, Sm−Ho (1−9)). Yields diminish pronouncedly
with increasing atomic number of the lanthanide and no
product is obtained at all for the heaviest ones (Er−Yb). The
decreasing yield with increasing atomic number is accompanied
by an increasing amount of an easily separable byproduct,
which is not LnF3, as determined by analysis and powder
diffraction. The exact nature of the byproduct has however not
been determined. Freshly precipitated, and not too intensely
dried, the tetranuclear compounds are isomorphous and
crystallize in the tetragonal space group P4/ncc as demonstrated
by the powder diffraction data for the series Ce−Dy (except
Pm) in Figure 1. Upon thorough drying the crystal solvents are
lost, as witnessed by elemental analyses and deterioration of the
crystals.
The cis-coordination of the two fluoride ions imposes a

square structure on the resulting tetranuclear cluster with
almost linear (169°) Ln−F−Cr bridges (cf. Figure 2). The
lanthanide ion is deca-coordinated with four bidentate nitrate
ligands and two bridging fluoride ligands. The coordination
number is smaller than usual in bidentate nitrate complexes
where coordination numbers of 11 and 12 are common, but it
is also found in, for example, [Nd(NO3)4(CH3OH)2]

−.12 The
coordination around chromium is very similar to that in the
parent complex, but with slightly elongated Cr−F bond lengths
1.8816(14)/1.8844(17) Å as compared to 1.8444(10)−
1.8621(10) Å in [CrF2(phen)2](ClO4)·H2O.

13

The Cr−N distances are at 2.0550(17)−2.063(2) Å in the
same range as found in the monomeric precursor: 2.0566(15)−
2.0934(15) Å. The crystallographic symmetry, which connects
different clusters by 4-fold screw-axes ensures all clusters to be
oriented with parallel Cr2Ln2-planes in the packing (see the
Supporting Information).
The closely related cis-[CrF2(bpy)2]

+ reacts analogously and
furnishes structurally similar fluoride-bridged tetranuclear
clusters. However, these systems are void of solvents of
crystallization and crystallize with lower symmetry in
orthorhombic I222 (cf. Supporting Information). It is note-

Figure 1. Powder diffraction patterns for [{CrF2(phen)2}2{Ln-
(NO3)4}2]·4MeOH·H2O (1−8). The lower trace is calculated on
basis of the single crystal diffraction data for the gadolinium
compound. The yields diminish steeply with increasing atomic weight
of the lanthanoid and amounts to less than 2% for the Dy-compound
(cf. Experimental Section). The low-angle part of the powder
diffraction also demonstrates the Dy-compound to contain a
crystalline impurity.

Figure 2. X-ray molecular structure of the isostructural metal clusters
in 6 and 3, for comparison shown with thermal ellipsoids (50%
probability). Hydrogens and solvent molecules are omitted and nitrate
ligands have been shown as wireframes for clarity. Color code: pink,
Ln; green, Cr; yellow, F; red, O; blue, N; gray, C. Selected bond
lengths (Å) and angles (deg), for 6: Cr−F: 1.8844(17); Cr−N:
2.058(2)−2.063(2); Gd−F: 2.2844(16); Gd−O: 2.506(2)−2.533(2);
Cr−F−Gd: 168.61(9). For 3: Cr−F: 1.8816(14); Cr−N: 2.0550(17)−
2.0615(19); Nd−F: 2.3348(15); Nd−O: 2.5326(19)−2.5651(18);
Cr−F−Nd: 168.74(8).
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worthy, that the cis configuration of the fluoride ligands in
[CrF2(phen)2]

+ does not suffice to introduce chelate binding
toward the lanthanoid ions. A similar result has recently been
observed for a homometallic tetranuclear manganese(II)
cluster: [MnII4F4(phen)8](NO3)4·12H2O

14 and parallels the
tetra-nuclear structures with approximately linear fluoride
bridges found for many metal pentafluorides. Thus, while
many examples are known with doubly bridging hydroxide,
oxide, and the heavier halides, fluoride clearly disfavors this
structural motif. This conclusion becomes even more evident
when the products resulting from reaction between trifluorido
complexes of Cr(III) and lanthanoid complexes are considered.
Scheme 1 depicts the structures obtained with the di- and

trifluorido complexes. Thus, for both fac-[CrF3(Me3tame)] and
fac-[CrF3(Me3tacn)], pentanuclear structures were obtained
from acetonitrile solutions using respectively [Ln-
(hfac)3(H2O)2] (Ln = Sm (10), Gd (11), Ho (12), Yb (13);
hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone) and Nd-
(NO3)3·6H2O as lanthanoid sources. Both types of structures
consist of triangular arrangements of the lanthanoid ions
bridged in the equatorial plane by either bidentate and bridging
nitrate (μ-nitrato-1,2κO:1κO′) ligands or fluoride ligands. These
triangles are then capped above and below the plane by
tridentate, but nonchelating, {LCrF3} moieties. Additionally,
the system derived from fac-[CrF3(Me3tacn)] features a most
unusual central μ3-fluorido ligand bridging all three neodymium
centers symmetrically. This bridging mode is very rare, but not
completely unprecedented in transition metal chemistry where
examples of planar μ3-F bridging fluoride exist in, for example,
[Ni3(μ3-F)(CF3CO2)6(CF3CO2H)3]

−.15 The overall 3-fold
symmetry of the clusters is broken by different equatorial
coordination environments of the lanthanoids and associated
small variations in Ln−F bond lengths toward the {CrLF3}
moieties.

Crystal structures of the pentanuclear systems are shown in
Figure 3. An important feature of the structures is the

additional bridging fluoride ligands (μ3 or μ2), which
demonstrates that even quite robust Cr(III) fluoride complexes
are susceptible to fluoride abstraction by lanthanoid ions under
mild conditions (cf. Experimental Section). However, despite of
this, formation of very insoluble LnF3 was never observed
under the experimental conditions used to prepare these
polynuclear complexes. Although the Cr−F−Ln bridges in 11,
12, and 14 are significantly bent at angles of 138.6−146.8°, it is
striking that the facial trifluorido complexes avoid chelate
binding of a single lanthanoid ion despite the lability and size of
the lanthanoid ions. This is again paralleled by the transition
metal fluoride chemistry where tri-μ2-fluorido complexes are
scarce in comparison with the abundance of tri-μ2-hydroxido

Scheme 1. Structure Diagrams of the Polynuclear Complexes
Obtained from Di- and Trifluorido Chromium(III) Building
Blocksa

aThe complete absence of chelating binding towards the lanthanoid
centers illustrates the tendency of fluoride bridges to avoid bending.

Figure 3. Side and top views of crystal structures of
[{CrF3(Me3tame)}2Ln3(hfac)6(μ-F)3]·7CH3CN (Ln = Gd (11), Ho
(12) ; l e f t ) and [{CrF3(Me3 tacn)}2Nd3(NO3)8(μ 3 -F) -
(H2O)]·6CH3CN (14; right). Solvent molecules and hydrogens
have been omitted for clarity. Thermal ellipsoids (50% probability)
have only been given for the inner cores, peripheral ligands have been
shown as wireframes for clarity. Color code: pink, Ln; green, Cr;
yellow, F; red, O; blue, N; gray, C. Selected bond lengths (Å) and
angles (deg), 11: Cr1−F: 1.903(7)−1.915(7), Cr2−F: 1.903(6)−
1.912(7), Cr1−N: 2.043(12)−2.053(12), Cr2−N: 2.057(11)−
2.066(12), Gd−Fμ‑Cr: 2.295(6)−2.338(7), Gd−Fμ‑Gd: 2.216(6)−
2.244(7), Gd−O: 2.39(3)−2.49(2), Cr−F−Gd: 142.8(3)−146.6(3),
Gd−F−Gd: 142.3(3)−143.9(4),12: Cr1−F: 1.893(4)−1.904(4),
Cr2−F: 1.892(4)−1.915(4), Cr1−N: 2.055(8)−2.062(7), Cr2−N:
2.044(7)−2.055(7), Ho−Fμ‑Cr: 2.256(4)−2.311(4), Ho−Fμ‑Ho:
2.189(4)−2.200(4), Ho−O: 2.35(3)−2.463(19), Cr−F−Ho:
143.3(2)−145.5(2), Ho−F−Ho: 143.3(2)−146.9(2),14: Cr1−F:
1.894(8)−1.936(8), Cr2−F: 1.918(9)−1.938(8), Cr1−N:
2.040(12)−2.095(12), Cr2−N: 2.075(12)−2.094(13), Nd1−
F120(μ3): 2.365(8), Nd2−F120(μ3): 2.434(8), Nd3−F120(μ3):
2.410(7), Nd1−O: 2.489(11)−2.542(10), Nd2−O: 2.508(11)−
2.652(11), Nd3−O: 2.499(10)−2.626(10), Nd1−Fμ‑Cr: 2.297(8)−
2.326(8), Nd2−Fμ‑Cr: 2.342(8)−2.353(8), Nd3−Fμ‑Cr: 2.372(8)−
2.386(8). Cr−F−Nd: 138.5(4)−146.8(4), Nd−O−Nd: 109.4(4)−
110.0(4).
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and tri-μ2-chlorido complexes. In combination these observa-
tions attest to a pronounced preference for linear bridging by
fluoride, which pertains to systems with lanthanoid ions. This
geometric preference is reminiscent of the behavior of cyanide
as a bridging ligand and it might, therefore, render robust
fluoride complexes, appealing building blocks for assembly of
polynuclear systems with targeted topologies.
In the structures of 11 and 12, Cr−F−Ln and Ln−F−Ln

bridging angles are very similar and both close to 140°.
However, this similarity should not be overinterpreted since the
trigonal bipyramidal structures in combination with the metal-
fluoride bond lengths restrict the bridging angles, which are
thus compromises between linear bridging and optimal bond
lengths. Since the preparations invariably involve hydrated
starting materials, it could be speculated, that some of the
fluorides alternatively could be assigned as isoelectronic
hydroxide ligands. The X-ray structures of 11 and 12 were
both solved with hydroxide in place of the equatorial fluoride
bridges with very little effect on the goodness of the modeling,
which only slightly, but not statistically significantly favors
fluoride bridges. However, electrospray mass spectrometry
(vide infra) only reveals intact clusters and fragments with
fluoride bridges and thus rules out the presence of hydroxide
bridges.
The polynuclear solid state structures described above are

not merely consequences of crystal packing, but reflect
association also in solution. When methanolic solutions of cis-
[CrF2(phen)2]NO3 and Gd(NO3)·aq are mixed to yield
solutions with different ratios of Gd/Cr (ranging from 0 to
2), there is an associated color change from red-purple to
orange. The ligand-field (LF) spectrum of Cr(III) changes,
resulting in a blue shift of the first spin-allowed band,
4T2(O)←

4A2(O), of 460 cm
−1 (cf. Figure 4). Since the position

of this band directly measures the octahedral component of the
ligand-field, the direction of the shift toward higher energies
might seem counterintuitive. However, shifts of the same sign
and even larger magnitude were found for fac-[CrF3(Me3tacn)]
interacting with Na+ ions in 2-propanol.9 It has also generally
been found that Cr(III) fluoride complexes exhibit solvato-
chromism with hypsochromic shifts upon moving to more
strongly proton donating solvents.16 It has been suggested that

this effect stems from a different radial dependence of the LF σ-
and π-parameters for fluoride. However, DFT modeling of the
interaction between neutral trifluorido complexes of Cr(III)
and Na+ in vacuum as well as in solution revealed a pronounced
breakdown of the commonly assumed additivity of ligand-field
contributions.9 Thus the actual decrease of the donor strength
of fluoride upon ligation or solvation is more than compensated
by an increased donation from the auxiliary amine, or as
demonstrated here, imine ligands. The change in absorption
spectrum results in isosbestic points suggesting only two
spectroscopically distinct coordination environments of the
chromium(III) as the Gd/Cr-ratio is increased.
The nature of the species in solution can be gauged by

electrospray mass spectrometry of reaction mixtures before
precipitation. For the tetranuclear compounds, this technique
identifies fragments of composition [{CrF2(phen)2}2Ln-
(NO3)3Ln(NO3)4]

+ and [CrF2(phen)2Ln(NO3)3]
+ as the

most prominent peaks in positive ion detection mode
(Supporting Information, Figure S5.1) and [CrF2(phen)2Ln-
(NO3)5]

− in negative ion detection mode for Ln = Ce (1), Sm
(4), and Gd (6). These ions are all likely fragments of the
tetranuclear structures determined in the solid state and in
agreement with the UV−vis spectroscopy points to extensive
association in solution before precipitation.
Although very insoluble in acetonitrile, the isolated

pentanuclear complexes (10−13) can be redissolved to a
small extent in this solvent, and the resulting solutions yield
mass spectra, which can unambiguously be correlated to the
solid state structure. Thus, three peaks are prominent in
positive ion detected electrospray mass spectra of such
solutions of 10−13 (cf. Supporting Information, Figure
S6.1−S6.4). These peaks correspond to compositions of {M-
hfac}+, {M+Na}+, and {M-LnF2(hfac)2}

+, where M denotes the
neutral pentanuclear cluster. The isotope pattern of the {M-
hfac}+-peak for 12 is shown in Figure 5 together with that of
the intact cluster plus a sodium ion. For both entities
simulations corresponding to all bridging ligands being fluoride
have been included. The perfect reproduction of the isotope
pattern (as found for the isostructural clusters with different
lanthanoid ions: 10, 12, and 13) rules out hydroxide ligands
and demonstrate exclusive fluoride bridging in these clusters.
As the first examples of unsupported fluoride bridges

between 3d and 4f ions, the magnetic properties of these
systems are of interest. The temperature dependencies of the
χT product for some of the tetranuclear square structures are
shown in Figure 6. At high-temperature (300 K) the χT values
(2: 6.3 cm3 K mol−1; 3: 6.2 cm3 K mol−1; 4: 4.0 cm3 K mol−1)
are in agreement with the values expected for two chromium-
(III) (S = 3/2, g ≈ 2) and two lanthanoid ions (Pr: 3H4, gJ = 4/
5; Nd: 4I9/2, gJ = 8/11; Sm: 6H5/2, gJ = 2/7). With decreasing
temperature the value for χT drops slightly for all compounds
because of the progressive depopulations of ligand-field states
(Stark sublevels).
Furthermore, for 2 a steep drop occurs below ∼10 K which is

not observed for 3 and 4 where the χT goes to a local minimum
(at ∼13 K) and then increases rapidly on lowering temperature.
For TM compounds this behavior is a signature of a
ferrimagnetic spin arrangement; however, in this case it may
be a result of weak ferromagnetic Ln−Cr (Ln = Nd, Sm)
interactions masked by the above-mentioned decrease of χT on
descending temperature. Notably, this behavior parallels that
observed for oxalate-bridged Cr−Ln systems with the same
lanthanoid ions.17 The magnetization curves do not show any

Figure 4. UV−vis spectral changes upon addition of Gd(NO3)3 to cis-
[CrF2(phen)2]NO3 in methanol/acetonitrile (1:4). Spectra were
recorded over 30 min at room temperature (RT). Prolonged storage
or further addition of Gd(NO3)3 results in precipitation of 6.
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signs of saturation at the highest available fields Hdc ≤ 5 T
(Supporting Information). This behavior is expected for
systems with low-lying excited states and/or strong magnetic
anisotropy. However, alternating current (ac) susceptibility
measurements were conducted with and without a static field
component and did not show any χ″ signal ruling out the
possibility that any of the compounds behave as single-
molecule magnets. This applies also to the dysprosium
compound (8). Theoretical modeling of the magnetic proper-
ties of lanthanoid-containing clusters is inherently complicated
because of the unknown ligand-field splittings and the exchange
interactions which may be anisotropic in nature. For this
reason, Gd3+, with its orbitally nondegenerate 8S7/2 ground
state is the preferred lanthanoid ion for modeling of magnetic
properties. In Figure 7 are shown the χT products for the
tetranuclear (6) and pentanuclear (11) gadolinium systems
together with the modeling of these data by the spin-
Hamiltonians of eq 1:

For Cr2Gd2 (6):

̂ = μ · ̂ + ̂ + ̂ + ̂

+ ̂ · ̂ + ̂ · ̂ + ̂ · ̂

+ ̂ · ̂
−

H g g

J

B S S S S

S S S S S S

S S

[ ( ) ( )]

(

)

B Cr Cr1 Cr2 Gd Gd1 Gd2

Gd Cr Cr1 Gd1 Cd1 Cr2 Cr2 Gd2

Gd2 Cr1

For Cr2Gd3 (11):

̂ = μ · ̂ + ̂ + ̂ + ̂ + ̂

+ ̂ + ̂ · ̂ + ̂ + ̂

+ ̂ · ̂ + ̂ · ̂ + ̂ · ̂
−

−

H g g

J

J

B S S S S S

S S S S S

S S S S S S

[ ( ) ( )]

( ) ( )

( )

B Cr Cr1 Cr2 Gd Gd1 Gd2 Gd3

Cr Gd Cr1 Cr2 Gd1 Gd2 Gd3

Gd Gd Gd1 Gd2 Gd1 Gd3 Gd2 Gd3 (1)

The g factors were fixed to gCr = gGd = 2.0. The χT and
reduced magnetization (M vs μBB/kBT) data (Supporting
Information) were fitted simultaneously. No zero-field splitting
(ZFS) terms were included in the models but fitting of the χT
data only, gave the same J parameter values indicating that the
Cr(III) and Gd(III) magnetic anisotropies are vanishing. The
fitting yields JGd−Cr = 0.71 cm−1 for 6 and JGd−Cr = 0.14(0) cm−1

and JGd−Gd = 0.06(0) cm−1 for 11.18 The magnetic exchange
coupling across the fluoride bridges is found to be comparable
in magnitude (0.14−0.71 cm−1) to that observed for 3d-Gd
interactions with other small bridges as cyanide19 or oxalate.20

To the best of our knowledge, only one example of a Gd(III)−
Cr(III) cluster with solely monatomic bridges is reported.21 In
this hydroxide bridged {GdCr4} cluster the Gd−Cr interaction
is indeed antiferromagnetic, but its magnitude was not
extracted. The very pronounced difference in magnitude of
the coupling in 6 and 11 in conjunction with other results
obtained by us, suggests that coupling decreases steeply with
bending of the fluoride bridges.22

The quite weak couplings in 11 together with isotropic
Gd(III) and Cr(III) with holohedrized octahedral coordination

Figure 5. Extracts of the positive ion detected electrospray mass spectrum of 11 (black) together with simulations thereof (gray). Other important
fragments observed for these complexes of all lanthanoid ions are [{Cr(Me3tame)F3}2Ln2(hfac)4F]

+ and [{Cr(Me3tame)F3}2Ln2(hfac)5]
+ (see

Supporting Information).

Figure 6. Temperature dependence of the χT product for 2, 3, and 4.
The expected high-temperature values calculated from the free ion
Curie constants are 2: 6.88 cm3 K mol−1, 3: 6.95 cm3 K mol−1, 4: 3.86
cm3 K mol−1.

Figure 7. Fits of the χT product for 6 (Cr2Gd2-square) and 11
(Cr2Gd3-bipyramid) to the spin-Hamiltonian of eq 1. The resulting
parameter values are 6, JCr−Gd = 0.71 cm−1; 11, JCr−Gd= 0.14(0) cm−1,
JGd−Gd= 0.06(0) cm−1. The g factors were fixed to gCr = gGd = 2.0.
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environment and concomitant small ZFS suggest that these
systems should possess a large number of electronic states
which are nearly degenerate with the ground state. This
situation makes 11 a good candidate for the observation of a
large Magneto-Caloric Effect (MCE), that is, the change of the
magnetic entropy and related adiabatic temperature following a
change in the applied magnetic field. This effect is at the basis
of the magnetic refrigeration technique and therefore a large
MCE is industrially in demand.
The magnetocaloric properties of 11 have been investigated

by means of heat capacity (C) experiments, which represent the
most suitable probe for the indirect determination of MCE.2a In
Figure 8 is shown the experimental C, normalized to the gas

constant R, as function of temperature for selected applied
magnetic fields (H). At high temperatures the heat capacity is
dominated by nonmagnetic contributions arising from thermal
vibrations of the lattice, which can be modeled with the Debye
function (solid line in Figure 8) yielding a value of ΦD = 18.0 K
for the Debye temperature, which is in the range of values
observed for this class of molecular compounds.23 At low
temperatures the heat capacity is dominated by an applied-field
sensitive contribution, which shifts to higher temperatures by
increasing H. From the experimental heat capacity, the
temperature dependence of the entropy is obtained by
integrating ∫ C/T dT, leading to the temperature dependencies
of the entropy which are depicted in the inset of Figure 8 for
the corresponding applied fields. In the cases of μ0H = 0 and 10
kOe, the lack of data points below approximately 0.3 K forced
us to add a constant value to the corresponding entropy curves
to match the limiting values at high temperature. This
procedure is justified by the entropy calculations performed
on the C data obtained for higher fields, whose temperature
dependencies are well within our experimentally accessible
temperature window. As we shall see below, this procedure
does not jeopardize our evaluation of the MCE of 11. We also
notice that the so-obtained zero-field entropy increases sharply
reaching an approximate value of 8R at low temperatures. The
1 K < T < 5 K temperature range is characterized by a slow
increase of the zero-field entropy, passing from ∼8R to ∼9R,
respectively. Above roughly 5 K, the zero-field entropy starts
again to steadily increase because of the dominant lattice

contribution (see Figure 8). The 8−9 R plateau could be
understood assuming that, for this temperature range, all
magnetic interactions are decoupled to large extent. Therefore,
under this assumption, we expect the entropy to approach the
maximum value for noninteracting single-ion spins, that is, 3 ×
R ln(2SGd + 1) + 2 × R ln(2SCr + 1) = 9R, where SGd = 7/2 and
SCr = 3/2, in good agreement with the experimental data.
From the temperature and field dependencies of the entropy

(Figure 8, inset), we can easily obtain the magnetic entropy
change (ΔSm) for selected applied field changes (ΔH). Note
that the estimation of the lattice contribution is irrelevant for
our calculations, since we deal with differences between total
entropies at different magnetic field strengths. The resulting
magnetic entropy changes are summarized in Figure 9. Besides

heat capacity, magnetization (M) data can also be employed for
estimating the magnetic entropy change by making use of the
Maxwell relation, ΔSm(T) = ∫ [∂M/∂T] dH. From the
isothermal M(H) curves (Supporting Information, Figure S3.4)
the so-obtained temperature-dependencies of ΔSm for μ0ΔH =
10, 40, and 50 kOe are displayed in Figure 9. The nice
agreement with the data obtained from C, proves that our
experimental uncertainty in the low-temperature zero-field
entropy does not affect the evaluation of the MCE of 11.
We experimentally observe −ΔSm to reach the maximum

value of 28.7 J kg−1 K−1 for T = 2.2 K and ΔH = (90−0) kOe
(Figure 9). This is a remarkable MCE that sets 11 among the
best performing molecular magnetic refrigerants recently
reported in the literature.2,24 Our results suggest that 11
could potentially be employed as a magnetic refrigerant for the
low-temperature range starting from 2 K and downward, that is,
the starting temperature for an adiabatic demagnetization
process.2a This range is of considerable technological interest
because it is easily reachable by pumping liquid 4He.

■ CONCLUSION
In conclusion, assembly of polynuclear lanthanoid complexes
employing robust chromium(III)-fluoride complexes is a
convenient route to small heterometallic complexes with
fluoride bridges. These polynuclear complexes constitute the
first examples of unsupported fluoride-bridges between a
paramagnetic transition metal and a lanthanide ion. The
propensity of fluoride for linear bridging established for

Figure 8. Temperature dependencies of the heat capacity (C) of 11
normalized to the gas constant R, collected for μ0H = 0, 10, 40, and 90
kOe. Inset: temperature dependencies of the experimental entropy for
several H, as obtained from the respective heat capacity data.

Figure 9. Temperature dependencies of the magnetic entropy change
(ΔSm) for 11, as obtained from the respective heat capacity (○) and
magnetization (*) data, for selected field changes (ΔH), as labeled.
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polynuclear transition metal systems is manifest also in mixed
3d-4f systems. The resulting, structurally simple systems
allowed for modeling of the magnetic properties and for the
first quantification of magnetic coupling between 3d and 4f
centers across a fluoride bridge. This coupling was found to be
numerically similar to that for cyanide or oxalate bridges, while
the lack of systems with isoelectronic hydroxide or alkoxide
bridges between chromium and gadolinium prevents direct
comparison with these bridging ligands. The coupling appears
to decrease pronouncedly with the bending of the fluoride
bridges. This can be favorably exploited for achieving a large
MCE, since a relatively large number of magnetic degrees of
freedom become available at low temperature because of the
low-lying excited spin states promoted by the weak coupling.
The weakest intracluster interactions are achieved in the
bipyramidally shaped {Gd3Cr2} (11) complex. Indeed, for 11
we report a remarkably large MCE at low temperatures, which
results also from the large net magnetic moment of the
molecule, combined with its negligible anisotropy. Further-
more, 11 has a relatively large metal/ligand mass ratio that is an
important advantage since the nonmagnetic ligands contribute
passively to the MCE.

■ EXPERIMENTAL SECTION
Synthesis: Materials. Ce(NO3)3·6H2O (Puriss. p.a., Fluka),

Pr(NO3)3·H2O (99.9%, Alfa Aesar), Nd(NO3)3·6H2O (99.9%, Alfa
Aesar), Sm(NO3)3·6H2O (99.9%, Alfa Aesar), Eu(NO3)3·6H2O
(99.9%, Alfa Aesar), Gd(NO3)3·H2O (99.9%, Alfa Aesar), Tb-
(NO3)3·5H2O (99.9%, Aldrich), Dy(NO3)3·5H2O (99.9%, Alfa
Aesar), Ho(NO3)3·5H2O (99.9%, Aldrich), Er(NO3)3·5H2O (99.9%,
Alfa Aesar), Yb(NO3)3·H2O (99.9%, Alfa Aesar), 1,10-phenanthroline
(Alfa Aesar), and the solvents MeOH (Lab Scan.), 2-methoxyethanol
(ACS 99.3+%, Alfa Aesar) were used as received.
cis-[CrF2(phen)2]NO3 was synthesized using a slightly modified

version of the method for synthesis of perchlorate salt.8atrans-
[CrF2(py)4]NO3 (0.13 mol) and 1,10-phenanthroline (0.25 mol)
were refluxed in 2-methoxyethanol (200 mL) for 1 h. The resulting
pink-orange product was collected by filtration and washed repeatedly
w i t h E tOH (99% , 4×100 mL) . Y i e l d : ∼85% . f a c -
[CrF3(Me3tame)]·H2O and fac-[CrF3(Me3tacn)] were synthesized
by the general protocol applied in the above reference using 2-
methoxyethanol and DMF as solvents, respectively. Yields ranged from
65 to 75%. [Ln(hfac)3(H2O)2] (Ln = Sm, Gd, Ho, Y) was synthesized
as described in literature.25

General Synthesis of {[CrF2(phen)2][Ln(NO3)4]}2. All of the
tetranuclear clusters were prepared by the same general protocol given
here. A solution of cis-[CrF2(phen)2]NO3(0.82 mmol) in MeOH (20
mL) was stirred at RT for 30 min and filtered twice through syringe
filters with pore size 0.45 μm. This resulting solution (I) was diluted
with an additional 20 mL of MeOH (for prep. of Pr and Nd
compounds) or 10 mL of MeOH (for the remaining lanthanoids). A
second solution (II) was made up of Ln(NO3)3·aq (0.81 mmol) in
MeOH (10 mL). The two solutions were mixed and left for
crystallization for 24 h at RT. Yields do not improve by preparation at
0 °C. The resulting mass of red crystals and white powder (the ratio
between these depends on lanthanoid in question) was loosened and
brought into suspension. Crystals were harvested by decantation of the
byproduct in suspension. The crystals were washed repeatedly with
MeOH by decantation until all the pale colored byproduct was
removed, and dried on a sintered glass filter in a dynamic vacuum.
Upon drying, solvent loss causes the crystals to lose their luster. A
faster precipitation of the product in microcrystalline form can be
achieved for Pr, Nd, and Sm by not adjusting the volume of solution I
with additional MeOH. The suspension of byproduct in MeOH was
transferred to centrifuge tubes and centrifuged, washed thoroughly
with MeOH, and dried in a dynamic vacuum.

Yields and analytical data for the individual compounds are given
below. Note, that drying has resulted in partial solvent loss. For all
compounds except that of Gd, the calculated values are given for the
solvent free composition.

{[CrF2(phen)2][Ce(NO3)4]}2 (1): Yield: 74% of theoretical based
on CeIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Ce2: H
1.92, C 34.38, N 13.36; found: H 1.72, C 32.83, N 12.36. By-product:
None.

{[CrF2(phen)2][Pr(NO3)4]}2 (2):Yield: 82% of theoretical based
on PrIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Pr2: H
1.92, C 34.34, N 13.35; found: H 1.94, C 33.44, N 12.44. By-product:
Present, but small amount.

{[CrF2(phen)2][Nd(NO3)4]}2 (3): Yield: 87% of theoretical based
on NdIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Nd2: H
1.91, C 34.21, N 13.30; found: H 2.05, C 34.24, N 12.69. By-product:
Present, but small amount.

{[CrF2(phen)2][Sm(NO3)4]}2 (4): Yield: 87% of theoretical based
on SmIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Sm2: H
1.90, C 33.96, N 13.20; found: H 2.08, C 33.79, N 12.52. By-product:
0.035 g (Analysis: Found (%): H, 1.62; C, 24.41; N, 7.99).

{[CrF2(phen)2][Eu(NO3)4]}2 (5): Yield: 37% of theoretical based
on EuIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Eu2: H
1.90, C 33.90, N 13.18; found (%): H 1.97, C 33.59, N 12.10. By-
product: 0.070 g (Analysis: Found (%): H, 1.76; C, 26.85; N, 9.16).

{[CrF2(phen)2][Gd(NO3)4]}2·CH3OH·H2O (6): Yield: 27% of
theoretical based on GdIII. Elemental analysis calcd (%) for
H38C49N16O26F4Cr2Gd2: H 2.17, C 33.41, N 12.72; found: H 2.06,
C 33.53, N 12.25. By-product: 0.05 g (Analysis: Found (%): H, 1.64;
C, 25.02; N, 7.99).

{[CrF2(phen)2][Tb(NO3)4]}2 (7): Yield: 5.5% of theoretical based
on TbIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Tb2: H
1.88, C 33.62, N 13.07; found: H 1.85, C 33.07, N 12.06. By-product:
0.082 g (Analysis: Found (%): H, 1.63; C, 24.41; N, 7.81).

{[CrF2(phen)2][Dy(NO3)4]}2 (8): Yield: 1.8% of theoretical based
on DyIII. Elemental analysis calcd (%) for H32C48N16O24F4Cr2Eu2: H
1.87, C 33.48, N, 13.02; found: H 1.79, C 32.09, N 12.19. The isolated
crystalline product is contaminated with a crystalline impurity (cf.
Figure 1) By-product: 0.097 g (Analysis: Found (%): H, 1.67; C,
24.36; N, 7.81).

{[CrF2(phen)2][Ho(NO3)4]}2 (9): Yield: Few crystals. By-product:
0.107 g (Analysis: Found (%): H, 1.61; C, 24.09; N, 7.75).

Attempted synthesis of {[CrF2(phen)2][Er(NO3)4]}2: Yield: None.
By-product: 0.093 g (Analysis: Found (%): H, 1.64; C, 23.72; N,
7.65).

Attempted synthesis of {[CrF2(phen)2][Yb(NO3)4]}2: Yield: None.
By-product: 0.016 g (Analysis: Found (%): H, 1,24; C, 13.36; N,
5.11).

Synthesis of {[CrF2(bpy)2][Ln(NO3)4]}2 (Ln = Nd, Sm, Eu, Gd).
This synthesis proceeds similarly as for the phenanthroline analogues.
Details are provided in the Supporting Information.

Synthesis of [{CrF3(Me3tame)}2Ln3(hfac)6(μ-F)3]·7CH3CN (Ln
= Sm (10), Gd (11), Ho (12), Yb(13)). [Ln(hfac)3(H2O)2] (0.61
mmol) was dissolved in MeCN (5 mL), and the resulting solution was
added to a suspension of fac-[CrF3(Me3tame)]·3H2O (0.41 mmol) in
MeCN (5 mL). The mixture was stirred for 2 min and filtered. The
filtrate was kept for 24 h to yield red-purple, X-ray quality crystals.
Yields: 20−25% (based on Ln). When the crystals are removed from
the mother liquor, desolvation takes place and the crystals deteriorate.
Thoroughly dried products yield the following elemental analyses: 10:
calcd (%) for H48C44N6O12F45Cr2Sm3: H 2.14, C 23.35, N 3.71;
found: H 2.12, C 23.15, N 3.38. 11: calcd (%) for
H48C44N6O12F45Cr2Gd3: H 2.12, C 23.14, N 3.68; found: H 2.07, C
23.12, N 3.37. 12: calcd (%) for H48C44N6O12F45Cr2Ho3: H 2.10, C
22.91, N 3.64; found: H 1.92, C 23.17, N 3.52. 13: calcd (%) for
H48C44N6O12F45Cr2Yb3: H 2.08, C 22.68, N 3.61; found: H 1.98, C
22.60, N 3.30.

Synthesis of [{CrF3(Me3tacn)}2Nd3(NO3)8(μ3-F)(H2O)]·6CH3CN
(14). A solution of fac-[CrF3(Me3tacn)] (0.100 g, 0.36 mmol) in
MeCN (10 mL) was allowed to diffuse through a porous glass frit
(D4) into a solution of Nd(NO3)3·6H2O (0.205 g, 0.47 mmol) in
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MeCN (20 mL) at 5 °C. Over a period of days pink rod-shaped
crystals develop. These are very often hollow and encapsulate some of
the mother liquor. Upon drying they lose solvent and crumble. The
best elemental analyses were obtained by gently crushing of the
crystalline product, repeated washing with MeCN, and storage below 0
°C. Elemental analysis calcd (%) for H62C30N20O25F7Cr2Nd3: H 3.53,
C 20.33, N 15.80; found: H 3.58, C 20.08, N 15.47.
Physical Measurements. Elemental analysis for C, H, and N was

performed with a CE Instrument: FLASH 1112 series EA, at the
microanalytical laboratory, University of Copenhagen. UV/vis spectra
were recorded on a Perkin-Elmer, Lambda 2 UV/vis spectropho-
tometer. Electrospray mass spectra were recorded on a micromass Q-
Tof spectrometer employing cone-voltages in the range 20−45 V from
solutions with concentrations in the nominal range 5−50 μM.
X-ray Crystallography. All single-crystal X-ray diffraction data

were collected at 122(1) K on a Nonius KappaCCD area-detector
diffractometer, equipped with an Oxford Cryostreams low-temperature
device, using graphite-monochromated MoKα radiation (λ = 0.71073
Å). The structures were solved using direct methods (SHELXS97) and
refined using the SHELXL97 software package.26 Crystals suitable for
X-ray diffraction were obtained direct from the synthetic procedure.
All non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were located in the difference Fourier map and refined isotropically
and constrained riding their parent atom in a fixed geometry. In 3 and
6 the water of crystallization is located on a crystallographic 4-fold axis,
and the hydrogen atoms could not be located. Crystals of 11 and 12
were extremely fragile, thin plates, which had to be transferred directly
from the mother liquor to mineral oil to prevent rapid solvent loss.
Hence, only low quality data could be obtained for 11 and 12; in both
structures the hfac− ligands coordinated to one of the Ln-atoms are
disordered. The disorder was resolved by refining the hfac− ligands in
two positions, equally populated, with one set angled 69° with respect
to the other. Crystal structure and refinement data for 6, 11, 12, 14,
and{[CrF2(bpy)2][Nd(NO3)4]}2 are summarized in Supporting
Information, Tables S1a and S1b. CCDC reference numbers:
837951 (6), 838473 (11), 838474 (12), 861406 (14), and 860725
({[CrF2(bpy)2][Nd(NO3)4]}2). These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.
ccdc.cam.ac.uk/data_request/cif. The molecular structure diagrams
were produced with the Mercury program ver. 2.4 from The
Cambridge Crystallographic Data Center. Powder X-ray crystallo-
graphic data were collected on a STOE Stadi-P powder diffractometer
equipped with PSD-detector using Cu (1.54060 Å) radiation
monochromated with curved germanium. Data were subtracted a
background by use of the STOE WinXPOW software ver. 1.10.
Theoretical powder diffractograms were generated from the single
crystal structure by use of the software “Mercury CSD 2.2” from The
Cambridge Crystallographic Data Center.27

Magnetic Measurements. The magnetic measurements were
conducted on a MPMS-XL Quantum-Design SQUID magnetometer
located at University of Copenhagen. All measurements were
performed on polycrystalline samples immobilized in a frozen n-
eicosane matrix to avoid torqueing. The susceptibilities were corrected
for diamagnetic contributions from the sample holder, n-eicosane, and
the sample by means of Pascal’s constants. Alternating current (ac)
susceptibility measurements were measured with various frequencies in
the range 1−1500 Hz with an ac field amplitude of 3 Oe with and
without an applied static field (Hdc< 2 kOe). The modeling was
performed with MagProp28 and home-written software. Heat capacity
measurements using the relaxation method down to ∼0.3 K on
powder samples were carried out by means of a commercial setup for
the 0 < B0 < 9 T magnetic field range.

■ ASSOCIATED CONTENT

*S Supporting Information
Table of crystallographic data for 6, 11, 12, and 14 (Table S1a)
as well as for {[CrF2(bpy)2][Nd(NO3)4]}2 (Table S1b).
Powder diffraction data for {[CrF2(bpy)2][Ln(NO3)4]}2 (Ln
= Pr, Nd, Sm, Eu, Gd). Magnetization data for compounds 2, 3,

4, and 11. Syntheses and analytical data for {[CrF2(bpy)2]-
[Ln(NO3)4]}2 (Ln = Nd, Sm, Eu, Gd). Electrospray mass
spectra for compounds 1, 4, and 6 as well as for compounds
10−13. This material is available free of charge via the Internet
at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*Fax: +45 35320212. E-mail: bendix@kiku.dk.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
J.B. and H.W. thank the Danish Research Councils for support
under Grant FNU: 272-08-0491. S.P. thanks FNU Sapere Aude
(Grant 10-081659).

■ REFERENCES
(1) (a) Sessoli, R.; Gatteschi, G.; Caneschi, A.; Novak, M. A. Nature
1993, 45, 141−143. (b) Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli,
R. Science 1994, 265, 1054−1058. (c) Ishikawa, N.; Sugita, M.;
Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125,
8694−8695. (d) Ishikawa, N. Polyhedron 2007, 26, 2147−2153.
(e) Milios, C. J.; Vinslava, A.; Wernsdorfer, W.; Moggach, S.; Parsons,
S.; Perlepes, S. P.; Christou, G.; Brechin, E. K. J. Am. Chem. Soc. 2007,
129, 2754−2755. (f) AlDamen, M. A.; Clemente-Juan, J. M.;
Coronado, E.; Marti-Gastaldo, C.; Gaita-Arino, A. J. Am. Chem. Soc.
2008, 130, 8874−8875. (g) Sessoli, R.; Powell, A. K. Coord. Chem. Rev.
2009, 253, 2328−2341. (h) Sorace, L.; Benelli, C.; Gatteschi, D. Chem.
Soc. Rev. 2011, 40, 3092−3104. (i) Rinehart, J. D.; Long, J. R. Chem.
Sci. 2011, 2, 2078−2085. (j) Jiang, S.-D.; Wang, B.-W.; Sun, H.-L.;
Wang, Z.-M.; Gao, S. J. Am. Chem. Soc. 2011, 133, 4730−4733.
(k) Hewitt, I. J.; Tang, J.; Madhu, N. T.; Anson, C. E.; Lan, Y.; Luzon,
J.; Etienne, M.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed. 2010,
49, 6352−6356. (l) Lin, P.-H.; Burchell, T. J.; Ungur, L.; Chibotaru, L.
F.; Wernsdorfer, W.; Murugesu, M. Angew. Chem., Int. Ed. 2009, 48,
9489−9492. (m) Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna,
F.; Winpenny, R. E. P. Angew. Chem., Int. Ed. 2011, 50, 6530−6533.
(2) (a) Evangelisti, M.; Brechin, E. K. Dalton Trans. 2010, 39, 4672−
4676. (b) Karotsis, G.; Evangelisti, M.; Dalgarno, S. J.; Brechin, E. K.
Angew. Chem., Int. Ed. 2009, 48, 9928−9921. (c) Sharples, J. W.;
Zheng, Y.-Z.; Tuna, F.; McInnes, E. J. L. Chem. Commun. 2011, 47,
7650−7652. (d) Evangelisti, M.; Roubeau, O.; Palacios, E.; Camoń, A.;
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